当我们想要移动物体时,通常会用手或机械臂去抓取。但如果是液滴这样的易碎品,或者处在狭窄拥挤的空间里的物品呢?
近日,美国北卡罗来纳州立大学的科研团队带来了一个新的解决方案。他们开发出一种能随磁场变形的新型超材料(metamaterial),无需非间接接触就能操控物体,不仅打破了传统抓取方式的局限,更为精密操控领域带来了全新的可能性。
“我们面临着两个主要挑战。”研究人员解释说,“首先是如何移动那些无法用夹持器抓取的物体,比如易碎品或在密闭空间中的物品。其次是如何利用磁场来远程抓取和移动非磁性物体。”
为了应对这些挑战,研究团队将磁场控制与日本剪纸艺术“kirigami”的原理相结合,借此开发出一种超材料薄片,这种薄片由弹性聚合物制成,内部嵌入了磁性微粒,并在表面精心设计了特殊的切割图案。
该论文的主要作者、现任宾夕法尼亚大学博士后研究员 Yinding Chi 指出:“切纸设计对这种超材料薄片至关重要,因为它在不牺牲材料本身刚度的前提下,提高了材料的柔韧性。这使我们也可以在不损失机械强度的情况下,明显地增强材料的变形能力。”
在开发过程中,研究团队面临着一个看似矛盾的问题:如何让材料既容易变形又足够坚固以承载重物?
团队利用磁性弹性体、切纸(原理)、气球和磁铁的独特组合最终找到了答案。他们第一步制作了直径 5 毫米、厚度 265 微米的磁性弹性体圆盘,将其置于可充气膜上,像气球一样充气使其形成圆顶形状,接着进行磁化处理,最后恢复到原来的平坦状态。
这种创新设计让研究人能通过控制磁场的方向,使薄片表面产生类似海浪般的起伏运动。而通过调节磁场强度,则可以精确控制“波浪”的高度。
研究人员表示:“通过控制超材料薄片表面的运动,我们可以移动各种类型的物体,无论是液滴还是平板玻璃。这种操控方式的精确性和适应性让人印象深刻。”
在深入研究过程中,团队还发现了一些意想不到的特性。最初的圆盘在磁场作用下只能隆起略高于 1 毫米,而且材料的相对较低刚度限制了其承重能力。
为了解决这个问题,研究人员使用激光切割机在圆盘上制作了类似切纸艺术的图案。这个改进带来了惊人的效果,带有正交切割的圆盘在磁场作用下能够达到 4 毫米的隆起高度,这比没有切割的圆盘高出一倍多。
更令人惊喜的是,这种设计不仅没有降低材料的承重能力,反而在磁场作用下使其刚度提高了 1.8 倍。
理论上,引入切割应该会显著降低材料的杨氏模量(衡量材料在应力下的刚性程度的指标),使圆顶的结构刚度降低四倍。但实际效果却截然相反,这是因为传统计算公式没有考虑到磁场的影响。
当切割的长宽比为 6 时,材料对磁场的响应性显著提升,进而增强了磁场诱导刚化效应。
实验证明,这种带切割的圆顶能够将重达 43.1 克(相当于自身重量 28 倍)的物体提升到 2.5 毫米的高度并稳定保持。为了展示这项技术的实际应用潜力,研究团队制作了一个 5×5 的圆顶阵列,通过底部可移动的永磁体支柱进行控制。
这个系统能够精确地移动水滴、薯片、树叶,甚至小木板,还能转动培养皿。更令人兴奋的是,其表面对磁场变化的响应时间不到 2 毫秒,这一速度甚至可以与游戏显示器相媲美。
这项技术的应用前景十分广阔。在实验室,它可以用于精确输送和混合微量液体,这对于生物医学研究和化学实验具有重要意义。在虚拟现实领域,其快速响应的特性使其有望用于触觉反馈控制器,模拟不同物体的触感和质地。
研究人员表示:“虽然我对触觉技术还比较陌生,但考虑到我们能够最终靠调节磁场来改变表面的刚度,这应该能够帮助我们重现不同的触觉感知。”
目前,研究团队正致力于解决最后一个技术难题:如何提高分辨率。如果将每个圆顶比作显示器的一个像素,目前的分辨率还相比来说较低。
研究人员表示,通过先进的制造技术,有望将圆顶的直径缩小到约 10 微米。不过,在如此小的尺度下实现驱动是一个挑战。
除了继续研究小型化,研究团队还在探索这项技术在游戏和辅助设备等领域的应用。
这项创新不仅展示了材料科学的最新进展,也为未来的精密操控和人机交互开辟了新的可能性。它证明,有时候最优雅的解决方案不是让抓握更有力,而是更聪明地思考怎么样完全避免接触。